Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Math Biosci ; 341: 108713, 2021 11.
Article in English | MEDLINE | ID: mdl-34560090

ABSTRACT

Networks of genetic expression can be modeled by hypergraphs with the additional structure that real coefficients are given to each vertex-edge incidence. The spectra, i.e. the multiset of the eigenvalues, of such hypergraphs, are known to encode structural information of the data. We show how these spectra can be used, in particular, in order to give an estimation of cellular redundancy, a novel measure of gene expression heterogeneity, of the network. We analyze some simulated and real data sets of gene expression for illustrating the new method proposed here.

2.
Theory Biosci ; 140(3): 265-277, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34268705

ABSTRACT

Complex systems of intracellular biochemical reactions have a central role in regulating cell identities and functions. Biochemical reaction systems are typically studied using the language and tools of graph theory. However, graph representations only describe pairwise interactions between molecular species and so are not well suited to modelling complex sets of reactions that may involve numerous reactants and/or products. Here, we make use of a recently developed hypergraph theory of chemical reactions that naturally allows for higher-order interactions to explore the geometry and quantify functional redundancy in biochemical reactions systems. Our results constitute a general theory of automorphisms for oriented hypergraphs and describe the effect of automorphism group structure on hypergraph Laplacian spectra.


Subject(s)
Algorithms
3.
Phys Rev E ; 101(6-1): 062313, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688515

ABSTRACT

In the study of dynamical systems on networks or graphs, a key theme is how the network topology influences stability for steady states or synchronized states. Ideally, one would like to derive conditions for stability or instability that, instead of microscopic details of the individual nodes or vertices, rather make the influence of the network coupling topology visible. The master stability function is an important such tool to achieve this goal. Here, we generalize the master stability approach to hypergraphs. A hypergraph coupling structure is important as it allows us to take into account arbitrary higher-order interactions between nodes. As, for instance, in the theory of coupled map lattices, we study Laplace-type interaction structures in detail. Since the spectral theory of Laplacians on hypergraphs is richer than on graphs, we see the possibility of different dynamical phenomena. More generally, our arguments provide a blueprint for how to generalize dynamical structures and results from graphs to hypergraphs.

SELECTION OF CITATIONS
SEARCH DETAIL
...